Testing proportionality of two large-dimensional covariance matrices

نویسندگان

  • Lin Xu
  • Baisen Liu
  • Shurong Zheng
  • Shaokun Bao
چکیده

Testing the proportionality of two large-dimensional covariance matrices is studied. Based on modern random matrix theory, a pseudo-likelihood ratio statistic is proposed and its asymptotic normality is proved as the dimension and sample sizes tend to infinity proportionally.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new test for the proportionality of two large-dimensional covariance matrices

Let x1, . . . ,xn1+1 iid ∼ Np(μ1,Σ1) and y1, . . . ,yn2+1 iid ∼ Np(μ2,Σ2) be two independent random samples, where n1 6 p < n2. In this article, we propose a new test for the proportionality of two large p × p covariance matrices Σ1 and Σ2. By applying modern random matrix theory, we establish the asymptotic normality property for the proposed test statistic as (p, n1, n2) → ∞ together with the...

متن کامل

Global Testing and Large-Scale Multiple Testing for High-Dimensional Covariance Structures

Driven by a wide range of contemporary applications, statistical inference for covariance structures has been an active area of current research in high-dimensional statistics. This paper provides a selective survey of some recent developments in hypothesis testing for high-dimensional covariance structures, including global testing for the overall pattern of the covariance structures and simul...

متن کامل

Corrections to LRT on Large Dimensional Covariance Matrix by RMT

Abstract: In this paper, we give an explanation to the failure of two likelihood ratio procedures for testing about covariance matrices from Gaussian populations when the dimension is large compared to the sample size. Next, using recent central limit theorems for linear spectral statistics of sample covariance matrices and of random F-matrices, we propose necessary corrections for these LR tes...

متن کامل

Estimating Structured High-Dimensional Covariance and Precision Matrices: Optimal Rates and Adaptive Estimation

This is an expository paper that reviews recent developments on optimal estimation of structured high-dimensional covariance and precision matrices. Minimax rates of convergence for estimating several classes of structured covariance and precision matrices, including bandable, Toeplitz, and sparse covariance matrices as well as sparse precision matrices, are given under the spectral norm loss. ...

متن کامل

Computationally efficient banding of large covariance matrices for ordered data and connections to banding the inverse Cholesky factor

In this article, we propose a computationally efficient approach to estimate (large) p-dimensional covariance matrices of ordered (or longitudinal) data based on an independent sample of size n. To do this, we construct the estimator based on a k-band partial autocorrelation matrix with the number of bands chosen using an exact multiple hypothesis testing procedure. This approach is considerabl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 78  شماره 

صفحات  -

تاریخ انتشار 2014